PUBLICATIONS

PAPERS

H. Koizumi, A. Ishikawa: Berry connection from many-body wave functions and superconductivity: Calculations by the particle number conserving Bogoliubov-de Gennes equations: J. Supercond. Nov. Magn. arXiv 2105.02364 Program

H. Koizumi: Superconductivity by Berry Connection from Many-body Wave Functions: Revisit to Andreev−Saint-James Reflection and Josephson Effect: J. Supercond. Nov. Magn. 10.1007/s10948-021-05905-y

H. Koizumi: London Moment, London’s Superpotential, Nambu-Goldstone Mode, and Berry Connection from Many-Body Wave Functions: J. Supercond. Nov. Magn. 34 (1361-1370), 2021.

H. Koizumi, A. Ishikawa: Theory of supercurrent in superconductors: Int. J. Mod. Phys. B 34, (2030001) 2020.

H. Koizumi: Reversible superconducting-normal phase transition in a magnetic field and the existence of topologically-protected loop currents that appear and disappear without Joule heating: EPL 131 (37001), 2020.

H. Koizumi: Possible Occurrence of Superconductivity by the pi-flux Dirac String Formation Due to Spin-Twisting Itinerant Motion of Electrons: Symmetry 12 (776), 2020.

H. Koizumi: Explanation of Superfluidity Using the Berry Connection for Many-Body Wave Functions: J. Supercond. Nov. Magn. 33 (1697-1707), 2020.

D. Manabe, H. Koizumi:Supercurrent Generation by Spin-Twisting Itinerant Motion of Electrons: J. Supercond. Nov. Magn. 32 (2203-2312), 2019.

D. Manabe, H. Koizumi: Magnetic field induced charge order in cuprate superconductors: an explanation by spin-vortex-induced loop currents: J. Phys.: Conf. Ser. 1148 (012009), 2018.

H. Wakaura, H. Koizumi: External current as a coupler between the spin- vortex-induced loop current qubits: 1 (055013), 2017.

T. Morisaki, H. Wakaura, H. Koizumi: Effect of Rashba Spin-Orbit Interaction on the Stability of Spin-Vortex-Induced Loop Current in Hole-Doped Cuprate Superconductors: A Scenario for the Appearance of Magnetic Field Enhanced Charge Order and Fermi Surface Reconstruction: J. Phys. Soc. Jpn. 86 (104710-1-12), 2017.

H. Koizumi: Flux rule, U(1) instanton, and superconductivity: J. Supercond. Nov. Magn. 30 (3345-3349), 2017.

T. Morisaki, H. Wakaura, M. Abou Ghantous, H. Koizumi: Response Current from Spin-Vortex-Induced Loop Current System to Feeding Current: J. Phys. Soc. Jpn. 86 (074702-1-8), 2017.

H. Koizumi :Origin of the U(1) field mass in superconductors: J. Phys.: Conf. Ser., 833, (012016-1-11), 2017.

H. Wakaura, H. Koizumi: Possible use of spin-vortex-induced loop currents as qubits: A numerical simulation for two-qubit system: Physica C: Superconductivity and its applications 28 (61-69), 2016.

H. Koizumi, M. Tachiki: Supercurrent generation by spin-twisting itinerant motion of electrons: re-derivation of the ac Josephson effect including the current flow through the leads connected to Josephson junction: J. Supercond. Nov. Magn. 28 (61-69), 2015.

H. Koizumi, M. Tachiki: Instability of the BCS type pairing in magnetic field due to the Rashba spin-orbit interaction and supercurrent generation by spin-twisting itinerant motion of electrons in BCS superconductors: J. Supercond. Nov. Magn. 28 (2267-2273), 2015.

M. Tachiki, H. Koizumi :Vortex state of topological superconductor CuxBi2Se3: Phys. Rev. B 91 (104505-1-5), 2015.

A. Okazaki, H. Wakaura, H. Koizumi, M. Tachiki: Superconducting Transition Temperature of the Hole-Doped Cuprate as the Stabilization Temperature of Supercurrent Loops Generated by Spin-Twisting Itinerant Motion of Electrons: J. Supercond. Nov. Magn. 28 (3221-3233), 2015.

H. Koizumi, R. Hidekata, A. Okazaki, M. Tachiki: Supercurrent Flow Through the Network of Spin-Vortices in Cuprates: J. Supercond. Nov. Magn. 27 (2435-2446), 2014.

H. Koizumi, R. Hidekata, A. Okazaki, M. Tachiki: Persistent current generation by the spin-vortex formation in cuprate with the single-valuedness constraint on the conduction electron wave functions: J. Supercond. Nov. Magn. 27 (121-132), 2014.

H. Koizumi: What is the phase variable in superconductors?: theory of superconductivity based on the spin-vortex formation : J. Phys. : conf. ser. 428 (12041-1-12), 2013.

R. Hidekata, H. Koizumi: Spin-vortices and spin-vortex-induced loop currents in the pseudogap phase of cuprates, J. Supercond. Nov. Magn. 24 (2253-2267), 2011.

H. Koizumi: Spin-vortex superconductivity, J. Supercond. Nov. Magn. 24(1997-2011), 2011.

H. Koizumi: Spin-vortices in cuprates: magnetic excitations, optical conductivity, enhanced Nernst signal, and a persistent current generation, Physica C 470, (S118-S120), 2010.

H. Koizumi: Persistent current generation by a Berry Phase, J. Phys. A43, (354009-1-13), 2010

H. Koizumi: Spin Vortices in Cuprate Superconductors: Fictitious Magnetic Fields, Fictitious Electric Fields, and Persistent Current, J. Phys. Chem. A 113, (3997-4003), 2009.

H. Koizumi: Appearance of a Drude-Like Peak from Spin-Wave Excitations in the Effectively Half-Filled Mott Insulator, J. Phys. Soc. Jpn. 77, (123708-1-4), 2008.

H. Koizumi: Spin-wave excitations in effectively half-filled Mott insulators, J. Phys. Soc. Jpn 77 (104704-1-10), 2008.

S. Miyaki, K. Makoshi, H. Koizumi: Two-Copper-Atom Units Induce a Pseudo Jahn-Teller Polaron in Hole-Doped Cuprate Superconductors, J. Phys. Soc. Jpn. 77 (034702-1-6), 2008.

H. Koizumi: Loop Current Excitations in Effectively Half-filled Mott Insulators, J. Phys. Soc.Jpn. 77 (034712-1-13), 2008.

H. Koizumi: Low Energy Loop Current Excitations in a Mott Insulator, J. Phys. Chem. Solids 69, (3345-3348), 2008.

H. Koizumi: What is the role of strong hole-lattice interaction in the hole-doped cuprate superconductivity?, J. Phys.: conference series, 108 (012031-1-10), 2008

H. Koizumi: Current flow around small polarons embedded in a Mott insulator, J. Mol. Structure 838 (211-215), 2007

H.Koizumi: The origin of the Fermi arc in cuprates, Physica C 460-462, (898-899), 2007

S. Miyaki, S. Uzuhara, K. Terada, K. Makoshi, H. Koizumi: Molecular orbital cluster calculation study of electron correlation and local instability in La2-2xSr1+2xMn2O7, Phys. Rev. B 71(085117-1-10), 2005.

N. Hiraoka, M. Itou, A. Deb, Y. Sakurai, Y. Kakutani, A. Koizumi, N. Sakai, S. Uzuhara, S. Miyaki, H. Koizumi, K. Makoshi, N. Kikugawa, Y. Maeno: Ru-O orbital hybridization and orbital occupation in SrRuO3: A magnetic Compton-profile study, Phys. Rev. B 70(054420-1,4), 2004.

S. Uzuhara, H. Koizumi, S. Miyaki, K. Makoshi: Ab initio cluster study of the local lattice instability in La2-2xSr1+2x Mn2O7. Chem. Phys. Lett. 358 (29-35),2002.

H. Koizumi, Y. Takada: Geometric Phase Current in Solids: Derivation in a Path-Integral Approach. Phys. Rev. B 65(153104-153107),2002.

S. Miyaki, H. Koizumi, K. Makoshi: Ab initio cluster study of the bilayer manganite La2-2x Sr1+2xMn2O7. Chem. Phys. Lett. 350 (359-366),2001.

A.Koizumi, S. Miyaki, Y. Kakutani, H. Koizumi, N. Hiraoka, K. Makoshi, N. Sakai, K. Hirota,Y. Murakami: Study of the eg orbitals in the bilayer Manganite La 2-2xSr1+2xMn2O7 by using magnetic Compton profile measurement. Phys. Rev. Lett. 86 (5589-5592),2001.

T. Hotta, E. Dagotto, H. Koizumi, Y. Takada: Comment on “Charge-Orbital Stripe Structure in La1-xCaxMnx (x=1/2,2/3)”. Phys. Rev. Lett. 86 (2478-2478),2001.

T. Hotta, E. Dagotto, H. Koizumi, Y. Takada: Stripes in manganites. Int. J. Mod. Phys. B14 (3494-34992),2000.

H. Koizumi, I. B. Bersuker, J. E. Boggs, V. Z. Polinger: Multiple lines of conical intersections and nondegenerate ground state in T × t2 Jahn-Teller systems. J. Chem. Phys. 112 (8470-8482), 2000.

T. Hotta, Y. Takada, H. Koizumi, E. Dagotto: Topological Scenario for Stripe Formation in Manganese Oxides. Phys. Rev. Lett. 84 (2477-2480), 2000.

H. Koizumi, I. B. Bersuker: Multiconical intersections and nondegenerate ground state in E × e Jahn-Teller systems. Phys. Rev. Lett. 83 (3009-3012), 1999.

Y. Fukumoto, H. Koizumi, K. Makoshi: Location of conical intersections by the Pancharatnam connection and the sign-change theorem of Longuet-Higgins: A model calculation with H4 potential surfaces. Chem. Phys. Lett. 313 (283-292),1999.

Y. Takada, T. Hotta, H. Koizumi: Stripe structure and the Berry-phase Connection: Concept of geometric Energy. Int. J. Mod. Phys. B13 (3778-3782), 1999.

H. Koizumi: U(1) gauge symmetry breaking by a Berry phase in a crystal with a doubly-degenerate electronic band. Phys. Rev. B 59 (8428-8431), 1999.

T. Hotta, Y. Takada, H. Koizumi: Role of the Berry phase in the formation of stripes in manganese oxides. Int. J. Mod. Phys. B12 (3437-3456), 1998.

H. Koizumi, T. Hotta, Y. Takada: Bloch Electrons in a Jahn-Teller Crystal and an Orbital-Density-Wave State due to the Berry Phase. Phys. Rev. Lett. 80 (4518-4521), 1998.
; Koizumi et al. Reply. Phys. Rev. Lett. 81 (3803), 1998.

H. Koizumi: Elongation of Simple Metal Clusters in a Strong Magnetic Field. AIP Conference Proceedings 416, Similarities and Differences between Atomic Nuclei and Clusters (435-446), 1998.

A.G. Magner, S.N. Fedotkin, F.A. Ivanyuk, P. Meier, M. Brack, S.M. Riemann, H. Koizumi: Semiclassical analysis of shell structure in large spheroidal fermion systems. Ann. Phys. 6 (555-594), 1997.

H. Koizumi: Geometric Phase in Jahn-Teller Crystals. Phys. Rev. Lett. 76 (2370-2373), 1996; Koizumi Replies. Phys. Rev. Lett. 81 (491), 1998.

H. Koizumi and Y. Fukumoto: Fission of metal clusters: a comparison of Jellium model calculations and shell correction method calculations. Int. J. Quant. Chem. 30 (489-495), 1996.

H. Koizumi and S.Sugano: Theoretical study of fission of simple metal clusters using jellium model. Surf. Rev. Lett. 3 (613-616), 1996.

H. Koizumi and S.Sugano: The dynamical Jahn-Teller problem in X3 Exe systems. Surf. Rev. Lett. 3 (317-321), 1996.

H.Koizumi and S.Sugano: Geometric phase in two Kramers doublets molecular systems. J. Chem. Phys. 102 (4472-4481), 1995.

S. Sugano and H. Koizumi: Shell effects in fission of charged metal clusters. Comments At. Mol. Phys. 31 (427-443), 1995.

H.Koizumi and S.Sugano: Fragment spin multiplicities in the fission Ag232+ → Ag12+ + Ag11+. Phys. Rev. A 51 (R886-R889), 1995.

M.J.Davis, H.Koizumi, G.C.Schatz, S.E.Bradforth, and D.M.Neumark: The transition state photodetachment spectrum of OHCl-. J. Chem. Phys. 101 (4708- 4721), 1994.

H. Koizumi: A shell correction approach for fission of charged metal clusters. Prog. Theor. Phys. Supple. 16 (435-442), 1994.

H. Koizumi, S. Sugano: The geometric phase in two electronic level systems. J. Chem. Phys. 101 (4903- 4913), 1994.

H. Koizumi, S. Sugano, Y. Ishii: Shell correction study of fission of doubly charged silver clusters. Z. Phys. D 28 (223-234), 1993.

H. Koizumi, S. Sugano, Y. Ishii: Shell effects on fission of metal clusters. Z. Phys. D 26 (264-266), 1993.

H. Koizumi: A two-component wave function for nuclear dynamics on a Jahn-Teller split potential surface. Chem. Phys. Lett. 194 (472-476), 1992.

H. Koizumi, G. C. Schatz , J. M. Bowman: HN2 and DN2 resonance spectra: Scattering and stabilization calculations. Isotope effects in gas-phase chemistry. ACS Symposium series 502 (37-47), 1992.

H. Koizumi, G. C. Schatz, and M. S. Gordon: An analytical representation of the lowest potential energy surface for the reaction O(3P) + HCl → OH + Cl. J. Chem. Phys. 95 (6421-6428), 1991.

H. Koizumi, G. C. Schatz, and S. P. Walch: A coupled channel study of HN2 unimolecular decay based on a global ab initio potential surface. J. Chem. Phys. 95 (4130-4135)), 1991.

H. Koizumi, G. C. Schatz: Three-dimensional quantum scattering studies of transition state resonances: Results for O + HCl →OH + Cl. Advances in Molecular Vibrations and Collision Dynamics (JAI Press) 1A (139-164), 1991.

H. Koizumi, G. C. Schatz: Transition state resonances in collinear O (3P) + HCl → OH + Cl. Int. J. Quant. 23 (136-145), 1989.

J. K. Badenhoop, H. Koizumi, G. C. Schatz: A reduced dimensionality quantum reactive scattering study of the insertion reaction O (1D) + H2→ OH + H. J. Chem. Phys. 91 (142-149), 1989.

BOOKS

A. Bohm, A. Mostafazadeh, H. Koizumi, Q. Niu, J. Zwanziger: "The Geometric Phase in Quantum Systems", (Springer-Verlag, 2003).

S. Sugano and H. Koizumi: "Microcluster Physics", 2nd ed. (Springer-Verlag, 1998).

H. Koizumi : "Vibronic interaction and geometric phase", Chapter 6 , New aspect of ligand field theory, (in Japanese) (Kodansha,1998).